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This is a continuation of our previous work (1965) on the Sears-Resler-Stewartson 
controversy, in the context of axially symmetric flow. A new approach is pre- 
sented using boundary-layer arguments, which remove much of the old 
complexity. 

For resistive bodies of shape R(z) we uncover a similarity with plane airfoils 
of shape P(x) = R2(x). As before, Stewartson’s slug flows develop fore and aft. 
For bodies of very high conductivity the Sears-Resler (steady-state) solution 
turns out to be one possibility. It pertains to bodies (of much higher conductivity 
than the liquid) into which the initial magnetic field has not diffused. 

1. Introduction 
Steady flows of perfectly conducting inviscid liquids past thin airfoils were 

first studied by Sears & Resler (1959). Further consideration by Stewartson (1960) 
suggested that the sub-Alfvthic steady problem is not uniquely posed. Leibovich 
& Ludford (1965) re-examined the problem for bodies of finite (or zero) con- 
ductivity by first constructing a complete transient solution, and then passing 
to the steady limit. 

This work is a sequel to the latter paper, which will be denoted by L & L, and 
to which we shall frequently refer. 

We treat first the axisymmetric version of the plane problem considered in 
L & L. Although few modifications are required in the analysis, a different 
(boundary-layer) approach to the wave regions is presented in $2. It is more 
systematic and may allay misgivings about, the ad hoc character of our previous 
treatment. No longer do we need to distinguish between the potential and wave 
parts in these regions ($ 6). $ 7 contains a simple derivation of the ultimate motion. 

The boundary problem developed in $0 3 and 5 discloses the similarity between 
a slender axisymmetric body of shape R(x)-see equation (2)-and a plane 
symmetric airfoil with shape 

F(x)  = R+). 

This is the main result for resistive bodies. 
Next, in $3 8 and 9, we take up a perfect conductor, since this sheds more light 

on the Sears-Resler-Stewartson controversy (Stewartson 1960). Two new cases 
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arise corresponding to two possible types of magnetic field before the impulsive 
start (which leaves them unchanged). 

Oonsider a body of finite conductivity a b  a t  rest in a liquid of finite but large 
conductivity al. When a uniform magnetic field is switched on, it will take times 
proportional to ab and al to become established in the body and liquid respectively. 
Three situations may be distinguished. 

is small compared to a, and we wait for the field to become uniform 
everywhere. Our treatment ($0 1-7) with al = 00 shows that in the subsequent 
motion two Alfvbn waves, one upstream and the other downstream, move out to 
stop the flow relative to the body in two straight tubes bounded by vortex-current 
sheets. These are joined by a current-vortex sheet lying on a section of the body 
aft of its mid-section. The approximation holds if the diffusion time based on a, 
is large compared with the time in which the upstream wave moves a body length. 

Case 2.  a b  is at least comparable to uz and again we wait for the field to become 
uniform everywhere. 0 8, based on ab = al = 00, shows that the flow is similar 
to that in case 1 except that both tubes are bigger and their join lies in the liquid, 
being attached to the body only at the mid-section itself. The approximation 
holds under the same conditions. 

Case 3. crb islarge compared to a, and we wait only for the field to diffuse into 
the liquid. 0 9, based on crb = a, = 00, shows that Sears-Resler (1959) potential 
flowt is established instantaneously. This solution was proposed for insulators, 
but is in fact valid for extremely good conductors. 

In  all cases, the applied magnetic field which is established is uniform a t  
infinity and parallel to khe body symmetry axis, and to  the free stream. 

We may expect the flows in cases 2 and 3 to be transitory only. In a time com- 
parable to the ab-diffusion time a blurred version of that in 1 will form and persist. 

Similar remarks (and the corresponding analysis) could equally well have been 
developed for the plane airfoil. 
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Case 1. 

2. Formulation 

equations appropriate for axisymmetric flow are (cf. L & L (1)) 
Let Ox be the symmetry axis of the body and y the distance from it. Then the 

All quantities in (1) are dimensionless with U,, the free stream, as unit of 
velocity (u, v); and H,, applied field, as unit of magnetic intensity (h, k ) .  P is the 
total pressure, fluid plus magnetic, and is referred to pU;, where p is the density. 
p2 = (pHi) / (pUg)  is the squared ratio of the Alfvbn speed to the fluid speed in 

t Yih (1965) has described another way in which this flow can be set up- 
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undisturbed regions. The permeability, p, of the fluid is assumed to be the same 
in the body. c, the body length, is the unit of distance, and c/U, that of time. 

Locate the origin 0 at the maximum section. Then, if 

y = 7R(x), where R(0) = 1 (7<1)  (2) 

denotes the shape and x = a - 1, a are the nose and tail, respectively, we have 

R’(0) = R(a- 1 )  = R(a)  = 0. 

The body is pointed at either end and, for simplicity, convex. 
The impulsive start at time t = 0 leaves the magnetic field (whether that of 

case 1-3) unaltered. The fluid is set into potential motion past the body, which 
is an O(7) disturbance of uniform flow. Any vorticity or current which may subse- 
quently appear in the fluid must originate at the body. One expects these 
quantities to be either convected with the fluid or propagated with the AlfvBn- 
wave velocity. Because the body is slender and the magnetic field essentially 
uniform, regions of non-zero vorticity and current, if they exist,, are anticipated 
only in the immediate vicinity of the symmetry axis. 

The boundary conditions (developed in the next section) show, as in L &, L, 
that an O( 1) lodgitudinal disturbance is required subsequently. Continuity then 
requires that a/ay: ajax = O(7-I). Intense current and vorticity are propagated 
away from the body at  the Alfv6n velocity relative to the flow, forming tubular 
wave regions in front of and behind the body (for B > 1). 

In  these regions we therefore write 

2, = T V ,  k = TK, y = 7 Y  

and assume that all new variables and their derivatives are of order unity. The 
equations of motion become 

+ UU, + Vuy + P, = B2(HHx + K H y ) ,  ( 3 4  

4 + UH, + VHy = HU, -/- KU,, ( 3 b )  

(YU),+(YV), = 0, ( 3 4  

( Y H ) ,  + ( YK), = 0, ( 3  d )  

( 3 e )  P y  = 7”2(HK, + KK,)  - (F+ w, + VV,)], 

where we have written 
u = U(X, Y, t ) ,  h = H ( x ,  Y , t )  

to distinguish the solution inside the regions from that outside. The Y-induction 
equation has been omitted since it can be derived from the others. 

Equation ( 3  e )  implies that 

P = P(x,t), (4) 

correct to O ( T ~ ) .  Since the total pressure is continuous everywhere in the fluid and 
its disturbance is O(7) outside the wave regions, I?, is therefore 0(7), and may be 
neglected in ( 3  a ) .  It and equation ( 3  b )  will be replaced by 

( 5  T ) (U _+ BH), + (U T pH) (U _+ pH), + (7 T pK) (U f FH),  = 0, 
19-2 
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which show that U +. PH is conserved along the lines 
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1,: dt = dx/(  U T PH)  = d Y/ (  V T /3K) 

in (x ,  Y ,  t)-space. These are the Alfvbn waves mentioned earlier. 
The equations governing the wave regions are (3c ,  d ) ,  (4), and (5  F ). 

3. Boundary conditions 
At the surface of the body 

v = 7 R f ( x )  U ,  ( 7 )  

and the normal component of magnetic field is continuous. If the body has finite 
conductivity the tangential component is also continuous (when the fluid is 
inviscid and perfectly conducting in the sense of L & L, i.e. vanishing viscosity, 
vanishing magnetic diffusivity, with the ratio of the first to the second also zero). 
On the other hand, if the conductivity of the body is so high that it may be 
assumed infinite, the relevant condition is the vanishing of the electric field. 
We must now translate these into boundary conditions on the velocity and 
magnetic field in the fluid. 

Finite conductivity 

Equation (If )  holds everywhere and may be satisfied by setting 

yh = @v9 yk = - @x# 

The magnetic flux @ is even in y and so has the form 

@(z, Y ,  t )  = 4 Y 2 W ,  Y ,  t )  + 0 ( Y 4 )  (8) 

@t+q@s = 0 (9) 

in the body (cf. L & L(8)). Outside it is convected with the fluid, and this yields 

on the body. Here q is surface speed and s is arc length along the body surface. 
Now, both @ and h are continuous across the interface. So we may insert (8) 

into (9) to obtain the equation 

(R2h)t + q(R2h), = O ( T ~ )  

k = --7 R h 8 + 0 ( ~ 3 ) ,  

(10) 

(11) 

for the values of h in the fluid at the body surface. The component k is given in 
terms of h by 

as is easily seen from equation (8). Clearly q can be replaced by u and s by 2 (now 
a parameter on the surface) without increasing the error in equations (10) and (1 1).  

In  terms of the variables introduced in $ 2  the conditions ( 7 ) ,  (lo), and (11) 
become 

The second of these requires H, = - 2Rf/R initially, whereas the initial potential 
flow gives H, = o(7) (see equation ( 3 b ) ) .  It is this incompatibility which is 
resolved by the emission of Alfvbn waves. 

V = R'U, (R2H),+ U(R2H), = 0, K = -iRHx. (12a,b,c)  

This all pertains to case 1. 



Hydromagnetic flow past a slender body 293 

InJinite conductivity 

The electric field in the fluid is vh - uk (in suitable units) so that 

qh, = 0 (13) 
at the surface, where h, is the normal component of magnetic field. Inside the 
body the magnetic field is frozen. 

In  case 2 the initial field which persists inside the body is uniform, so that 
q = 0, i.e. u = v = 0 a t  the surface. Continuity of h, also adds 

k = TR’(h- 1). 

In  terms of the new variables the conditions become 

U = V = 0, K = R‘(H- 1). (14, a, b, c )  

In  case 3 the initial field in the body is zero, so that h, = 0, and condition (13) 
is automatically satisfied. 

4. A relation between U and W 
In  this section, which applies equally to cases 1-3, we deduce some of the 

properties of the lines I ,  described by (9). 
The lines have a direction, that of t  increasing. Since they only have meaning 

in the fluid, they may begin or end only on the body surface (for t > 0 )  or on the 
plane t = 0. It should be emphasized that they apply in the external region of 
potential flow as well as in the channel. A line which originates a t  t = 0 carries 
undisturbed values of U - PH or U + PH, but a line originating at  the body surface 
carries whatever values of the pertinent combination of U and H it may have had 
at the body. 

The vectors ( U ,  V )  5 P(H,  K )  point to opposite sides of a stream-line if the 
normal component, H, of magnetic field is non-zero. Therefore, at a solid 
boundary penetrated by the magnetic field, one and only one of the pair I ,  
points into the fluid. A ‘wave’ consists of a packet of those lines I ,  carrying 
disturbances to U and H ,  i.e. those &-lines originating at the solid boundary. 
Consequently, one wave consisting of I,-lines and another of I--lines cannot 
intersect on the body surface. It is conceivable that two such waves could inter- 
sect in the fluid but, as in two dimensions, the assumption that they do not leads 
to a consistent solution. 

In  view of these remarks, we see that U and H are simply related in a wave 
region. Consider a wave consisting of I+-lines; since U+PH is conserved along 

(15 + 1 
I--lines, we must have 

in the (downstream) wave, because all of the I--lines crossing the wave originate 
at t = 0, where U = H = 1. Similarly, 

(15 - 1 

U+PH = 1+P 

U-PH = 1-8 

in a wave (upstream) consisting of I--lines. These imply [cf. equations (6 T )] that 
the z-components of the wave velocities are constant; and that they have 
appropriate signs for /? > 1. 
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At any given instant the surface of the body is divided into two parts at the 
transition station. One part is transmitting upstream (I--lines) and receives the 
information (15 - ) from undisturbed conditions; the other part transmits down- 
stream (I+-lines) and receives (15+).  The two parts are characterized by the 
sign of H,. 

5. Solution on the boundary in case 1 
The values of U and H on the boundary are determined by equations (12b)  

and (15 T ) without further reference to the disturbance in the fluid. Since this 
problem is identical with that for a plane airfoil with shape function F ( x )  = R2(x) ,  
we can read off its solution from L & L. 

The transition station (which starts at x = 0) moves downstream and ultimately 
comes to rest at x = xt where 

R(xJ = JCP- l ) l ( B +  1). 

The surface is then divided into three parts. 
(i) a-  1 < x .c 0. Here U + 0 and H + 1 - l/p. Transmission was always 

upstream. 
(ii) 0 < x < xt. Here U 4 (p- 1 )  [ ( l / R z ( x ) )  - 11 and H + (p- 1)/pR2(x). 

U increases steadily from 0 to 2,  and H from 1 - 1{/3 to 1 + 1/p. Magnetic lines 
follow the body contour. Transmission was first downstream but eventually 
became upstream. 

(iii) xt < x < a. Here U + 0 and H + 1 + l/p. Transmission was always 
downstream. 

In  (i) and (iii) the approach is exponential in time at each station; in (ii) it  is 
algebraic. 

6. The wave regions. External potential fields 
Consider the forward wave. The values of U and H on the boundary are pro- 

pagated into the fluid according to (6 - ), where U - p H  = 1 - p. To determine 
U and H in the wave we must therefore know V - BK, and it is remarkable that 
this combination can be found without knowing V and K separately. In  fact their 
determination depends on finding U and H first. 

Equations (3c), ( 3 4 ,  and (15-)  show that 

Here the subscript b denotes values on the body or on the axis which are given in 
$3,  for any of the cases 1-3. For convenience we define R E 0,  for x not in 
(a-  1,a).  

V-p.K is therefore a known function of x and t divided by Y .  A signal is 
displaced laterally while abreast of the body but travels horizontally once clear 
of the nose. The assumption of a thin wave region is therefore not violated if 
7 / (P -  1) < 1. 
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We shall not write down the formulae for U and H as functions of x ,  Y ,  t. 
From them V and K are separately determined by the continuity equations 
(3  c,  4. 

Y V = RV, -Jz FUz(x, F, t )  d 7, (17a) 

I’ 
Y K  = RK, -IR FHz(s, F, t )  d F. 

For the backward wave change the sign of p. 
The edge of either wave region is marked by signals which left the body at t = 0 

and those emitted by the transition station, Outside there is a potential distur- 
bance of o(7) of the free stream and magnetic field, so that 

= +7($t+ $z)z, = + 7 # z ~ 1  

21 = 7 ( A +  $Jt,, k = 7$zy, 

p = -7[$lt+2$,+(1-P2)$2z1, Y $ Z Z + ( Y # J V  = 0’ 

(cf. Stewartson 1960). Across an edge there is? continuity of (a)  mass flux, (b )  
magnetic flux, ( c )  total pressure, and ( d )  tangential momentum flux. 

Conditions (a) and (b) amount to continuity of normal velocity and magnetic 
intensity, respectively, and together fix $. 

W a )  
8% 

($ t+#z )y=  V + ( l - V = ,  

on the wave edge.$ Each of these presents a standard problem in hydrodynamic 
slender-body theory, which will not be dealt with further here. It is necessary 
to check that the $f + #2 obtained from the first is compatible with the $z obtained 
from the second. The details are similar to, and just as mysterious as, those for 
plane flow given in L & L, so we shall omit them. 

Once # is determined and the corresponding P calculated, condition (c) fixes 
the P(z, t )  of equation (4). Condition ( d )  gives the perturbed values of U ~f: BH 
entering the wave regions, so that it falls on the longitudinal disturbance of 
0(7), so far not discussed. The calculation of this disturbance is lengthy and does 
not add materially to the present picture. Leibovich’s thesis (1965) gives the 
details for plane flow, which is very similar. 

7. Case 1. The ultimate motion. Drag 
Consider again the forward wave and now its ultimate shape. The point (5, Y ) ,  

which at  time t receives a signal originating at  the body at sp and time tp is, 
according to equation (6 - ), given by 

x = x p -  (p- 1 )  (t-t,), ( 1 9 4  

t See, for example, Landau & Lifschitz (1960). 
$ Yw(z, t )  is the value of Y at the wave boundary. 
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Here equations (16), (12a, c), and (15 - ) have been used and we have set 
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e(x,t) = (R~u,),. 

For points z < a - 1 the upper limit in (19b) may be replaced by a - 1, since 
8 = 0 for these values of x. 

Fix x and take an xp < 0. Then Y -+ R(zp)  as t (and therefore t p )  tends to 
infinity, since 8 becomes exponentially small. The signals move horizontally and 
the values of U and H carried by them decay exponentially to 0 and 1 - 1/,9, 
according to 9 5 (i). 

On the other hand, if 0 < xp < x, and x is in the same range, 8 -+ - +(p- 1) (RZ), 
[according to §5(ii)] and Y + R(x). For z < 0, Y -+ R(0) = 1. The approach is 
algebraic. Signals follow the surface to its maximum section and then move away 
horizontally. All values of U between 0 and 2 and of H between 1 - 1/p and 
1 + 1//3 are carried, so that a combined vortex-current sheet is formed on the part 
0 < x < x, of the body. 

FIGURE 1. The ultimate magnetic field for p = 2 in case 1. The vertical scale has been 
greatly enlarged. Heavy lines are current sheets, outside which the flow field coincidm with 
the magnetic field. 

By changing the sign of j in equations (19) the ultimate form of the backward 
wave may be deduced. It stems from the part x, < xp < a of the body and is 
attained exponentially. All signals move horizontally and carry the values 

The ultimate potential disturbance now follows from equations (17) and (18). 
U = 0, H = 1 + 1/p. 

For z < 0 and z > zf they show that, on the wave boundary, 

In  0 < x < xf the wave collapses and both x- and y-derivatives become infinite. 
However, omitting the t-derivative in equation (5  - ) we may write 

~ ( 1  -p)  u, = - ~ ( v - p ~ )  u, = -eu, 

$,a/ = R', 

in equation (17a) and integrate formally. Equation (Ma)  then gives 

on y = 7R(x), 0 < x < xt. The same result is obtained from equations (17b) and 
(18b). 

The potential flow follows the two cylindrical wave regions and the connecting 
section of the body surface. The magnetic field parallels it. Figure 1 gives a 
sketch for ,9 = 2. 
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All these results are similar to those for plane flow treated in L & L. Their 
present derivation is perhaps clearer. As there, the drag is all due to fluid pressure, 
and a similar calculation shows that the drag coefficient (based on the maximum 
cross-section) is 4(8- 1). 

8. Flow past a perfect conductor. Case 2 
The front of the body (x < 0 )  always transmits upstream while the back 

(z > 0 )  always transmits downstream, since H, does not vary in time. The 
boundary conditions (14) in conjunction with equations (15 T ) show that 

U =  V = O ,  H =  1T1//3, K =  T(1//3)R' ( ~ 2 0 )  

on the body at a,ll times. These values of U ,  V ,  H also hold in the wave regions, 
being achieved instantaneously across the wave fronts, while equation (1  7 b )  gives 

K = T (1//9Y) RR'. 

FIGURE 2. Wave regions for = 2 when the body is perfectly conducting: (a) instantaneous 
magnetic field, heavy lines are current sheets, and also there are vertical current sheets in 
the wave regions at  the leading and trailing edges ; ( b )  instantaneous velocity field. 

The trajectory of a signal in the forward wave can be given explicitly. It ia 
determined by equations (1 9 )  with 

and therefore follows the curve 
O(x,t) = 2RR' 

(/? - 1) Y2 = /3R2(z9) - P(z), 

time being given by equation (19a). The wave front is (t, = 0 )  

( B - 1 )  Y2 = /3R2[z+(/9-1)t]-R2(~),  

while the rest of the edge of the wave region is (z, = 0 )  

(8- 1 )  Y2 = /3-R2(2). 
For the backward wave change the sign of /3. 
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Upstream the flux tube through the body is spread from an initial radius 7 to a 
final one J@/(/3 - 1)}7. Downstream it is reduced to a radius J{/3/(/3 + 1)}7. Once 
the wave fronts are cdmpletely developed they propagate unaltered. The only 
changes in the wave regions are then increases in the lengths of their central parts 
at the rates (B T 1)  t (see figure 2). 

The compatibility of equations (18) is easily checked from equations (20). The 
potential flow instantaneously follows the shape formed by the two wave regions, 
as if they were solid. Ultimately it follows the two semi-infinite cylindrical parts 
of the wave regions and their join. The magnetic field then parallels it. Note that 
in addition to the edges of the wave regions there is a current sheet at the surface 
of the body. 

The drag coefficient is 4p. 

9. Flow past a perfect conductor. Case 3 
The initial magnetic field is potential with vanishing normal component at the 

surface of the body. It is therefore parallel to the initial velocity field. This state is 
compatible with the boundary conditions so that no waves are emitted. 

The initial fields persist for all time. €2, is always zero at the body, so that no 
signal can be emitted or received (or needs to be). Sears-Resler flow is achieved 
instantaneously. 

Moreover, this result is not restricted to slender bodies (cf. Sears 1961) nor to 
values of ,13 greater than 1. 

The authors wish to thank Prof. K. Stewartson for several helpful discussions, 
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